Phylogenetic toric varieties on graphs
نویسنده
چکیده
We define phylogenetic projective toric model of a trivalent graph as a generalization of a binary symmetric model of a trivalent phylogenetic tree. Generators of the projective coordinate ring of the models of graphs with one cycle are explicitly described. The phylogenetic models of graphs with the same topological invariants are deformation-equivalent and share the same Hilbert function. We also provide an algorithm to compute the Hilbert function.
منابع مشابه
Toric Fano Varieties Associated to Building Sets
We characterize building sets whose associated nonsingular projective toric varieties are Fano. Furthermore, we show that all such toric Fano varieties are obtained from smooth Fano polytopes associated to finite directed graphs.
متن کاملOn a family of projective toric varieties
By means of suitable sequences of graphs, in a previous paper, we have studied the reduced lexicographic Gröbner bases of a family of homogeneous toric ideals. In this paper, we deepen the analysis of those bases and derive some geometric properties of the corresponding projective toric varieties.
متن کاملToric Ideals of Phylogenetic Invariants
Statistical models of evolution are algebraic varieties in the space of joint probability distributions on the leaf colorations of a phylogenetic tree. The phylogenetic invariants of a model are the polynomials which vanish on the variety. Several widely used models for biological sequences have transition matrices that can be diagonalized by means of the Fourier transform of an abelian group. ...
متن کاملToric Degeneration of Schubert Varieties and Gelfand–cetlin Polytopes
This note constructs the flat toric degeneration of the manifold Fln of flags in Cn from [GL96] as an explicit GIT quotient of the Gröbner degeneration in [KM03]. This implies that Schubert varieties degenerate to reduced unions of toric varieties, associated to faces indexed by rc-graphs (reduced pipe dreams) in the Gelfand–Cetlin polytope. Our explicit description of the toric degeneration of...
متن کاملPhylogenetic Algebraic Geometry
Phylogenetic algebraic geometry is concerned with certain complex projective algebraic varieties derived from finite trees. Real positive points on these varieties represent probabilistic models of evolution. For small trees, we recover classical geometric objects, such as toric and determinantal varieties and their secant varieties, but larger trees lead to new and largely unexplored territory...
متن کامل